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a b s t r a c t

Previously, multivariate calibration techniques have been successfully applied to model and predict the
antioxidant activity of green tea from its chromatographic fingerprint. Since the selectivity differences
between dissimilar chromatographic systems have already been valuably used in several applications, in
this paper it is studied whether combining the complementary information contained in two dissimilar
fingerprints can improve the predictive capacity of the multivariate calibration model. The simplest way
of combining the data is concatenating both fingerprints for each sample. The resulting matrix can then be
subjected to Orthogonal Projections to Latent Structures (O-PLS). Unfortunately, this approach resulted
in a more complex model with a prediction error of about the average of the errors obtained with the
individual fingerprints. Secondly, only the peaks with high loading and low orthogonal loading from both
chromatograms were included in the O-PLS model. This resulted in a reduced complexity, but not in better
predictions, probably due to a lack of complementarity of the information concerning the antioxidant
capacity. Finally, the concatenated fingerprints were subjected to stepwise multiple linear regression
(MLR) in order to build a model based on the variables most correlated with the antioxidant capacity.
The obtained prediction error was lower than those of both previous approaches, but still higher than the

error of the model based on a single analysis. This is probably again caused by a lack of complementarity
in the variables. Nevertheless, it was advantageous to develop fingerprints on dissimilar system, because
it enables to choose the most suited chromatographic profile to build a multivariate calibration model
for the considered purpose. In contrast to what was expected, the study showed that the most simple
(so the worst separated) fingerprints resulted in the best predictions. On the other hand, a more complex
fingerprint in which more compounds are separated is still important to improve the interpretability of

the model.

. Introduction

Green tea, originating from Camillia Sinensis, is associated with
any beneficial effects, e.g. protection against cancer and cardio-

ascular diseases [1–4]. The health effects would be caused by the
avonoids present in the tea, for instance, epigallocatechin gallate,
−)-epigallocatechin (EGC), (−)-epicatechin gallate and epicate-
hin. These compounds are able to scavenge free radicals [1–4] and
re thus responsible for the antioxidant capacity of green tea.

The quality control and identification of herbal products, as
reen tea, is often based on their fingerprints, because their

omposition is too complex to identify and quantify each com-
onent individually [5]. A fingerprint of a herbal extract is an
xperimentally obtained pattern showing the pharmacological
ctive and/or chemically characteristic components [5] and can,

∗ Corresponding author. Tel.: +32 2 477 47 34; fax: +32 2 477 47 35.
E-mail address: yvanvdh@vub.ac.be (Y. Vander Heyden).

570-0232/$ – see front matter © 2010 Elsevier B.V. All rights reserved.
oi:10.1016/j.jchromb.2010.08.012
© 2010 Elsevier B.V. All rights reserved.

amongst others, be developed by chromatographic techniques as,
for instance, high-performance liquid chromatography (HPLC), or
by capillary electrophoresis [5,6]. The resulting chromatographic
or electrophoretic profiles are then compared with the fingerprint
of a standardized extract to verify the identity and the quality of
the extract [7].

An important quality criterion of green tea, its antioxi-
dant capacity, cannot be directly derived from the fingerprints.
Most commonly, spectroscopic methods, as the Trolox-equivalent
antioxidant capacity (TEAC) assay [8,9], or the 2,2-Diphenyl-1-
pikrylhydrazyl (DPPH) test [10], are applied to quantitatively
estimate the antioxidant capacity of green tea. Earlier, Mas-
sarts group [11] managed to model the antioxidant capacity as
a function of spectral information, e.g. near infrared data. van

Nederkassel et al. [12] succeeded in applying two different mul-
tivaritate calibration methods, i.e. partial least squares (PLS) [13]
and Uninformative Variable Elimination (UVE)-PLS [14], to predict
the antioxidant capacity of green tea extracts from their chro-
matographic fingerprints. Later, we explored several multivariate

dx.doi.org/10.1016/j.jchromb.2010.08.012
http://www.sciencedirect.com/science/journal/15700232
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alibration techniques for the same purpose [15], which resulted
n a preference for the Orthogonal Projections to Latent Structures
O-PLS) technique [16]. The use of fingerprints for determining
he antioxidant capacity of green tea samples has two advantages
ompared to the TEAC assay: first valuable information for qual-
ty control is obtained and second the compounds responsible for
ntioxidant capacity can be indicated.

The aim of this paper is to evaluate whether the information
ontained in fingerprints, measured on two dissimilar chromato-
raphic systems, can be included in the multivariate calibration
odel to improve its predictive capacity. Dissimilar systems exhibit

onsiderable differences in selectivity and may therefore provide
omplementary information about a sample [17,18]. Two com-
ounds not separated, for instance, with the first system potentially
ay be separated with the second, and vice versa. This might result

n better predictions and/or interpretability of the model.
Green tea samples were analyzed on two dissimilar reversed-

hase liquid chromatography systems in order to test the above
ypothesis. The resulting chromatograms were aligned per method
ith correlation optimized warping (COW). Then principal compo-
ents analysis (PCA) was applied to detect outliers, which should be
emoved and eventually the remaining samples were subjected to
he Kennard and Stone algorithm to select a representative calibra-
ion set of tea samples. For each calibration sample, both dissimilar
aligned) fingerprints were concatenated resulting in one matrix,
hich was subjected to O-PLS. In order to reduce data complexity,

t was also tried to select the most important variables from the
atter matrix prior to O-PLS or multiple linear regression (MLR).

. Theory

.1. Trolox-equivalent antioxidant capacity assay

The TEAC assay measures the decolorization caused by the
cavenging of the blue 2,2′-azino-bis-(3-ethylbenzothiazolin-6-
ulfonic acid) (ABTS) radicals by antioxidizing compounds. This
ecolorization is determined spectrophotometrically at 729 nm
nd is a measure for the antioxidant capacity. In this study, the
EAC value reflects the scavenging capacity of a 1% (m/v) green
ea extract expressed as the equivalent concentration (in mM) of
rolox, a water-soluble vitamin E analogue. More details about the
EAC assay can be found in Ref. [8].

.2. Correlation optimized warping

COW aligns two chromatograms piecewise by maximizing the
orrelation between them [19]. First the chromatogram is divided
n a number of segments. The analyst needs to define two param-
ters, i.e. the number of chromatographic points in each segment
N) and the slack parameter (t). The latter restricts the number of
oints that the segment end point can be moved. It should be large
nough to allow a flexible warping, but it should also be kept small
nough to avoid the matching of non-corresponding peaks. Warp-
ng is then achieved by moving the endpoint of each segment and
ompressing or stretching the segment maximizing the correlation
ith the corresponding segment in the target chromatogram, i.e. a

epresentative chromatogram with which all other fingerprints are
ligned.

.3. Principal components analysis
PCA is a variable reduction technique, which enables to visu-
lize multivariate data in a low-dimensional space [20,21]. This
s achieved by calculating new latent variables, called principal
omponents (PC’s), which are linear combinations of the original
r. B 878 (2010) 2733–2740

variables orientated in the directions of the largest remaining vari-
ation. The PC’s are mutually orthogonal and maximally (n − 1) PC’s
can be constructed, where n is the number of original variables.
However, in most cases almost all variation is explained by the first
few PC’s.

2.4. Kennard and Stone algorithm

This algorithm can be applied to select a representative subset
of samples, which are uniformly distributed in the experimental
space [22,23]. Often the first arbitrarily selected object is the center
point, i.e. the point closest to the mean. Then the sample located
furthest from this center point is selected. An alternative is that the
two objects situated furthest from each other are selected first. The
third sample included in the set, is the one furthest from the first
two selected, etc. This procedure can be continued until the desired
number of samples is selected.

2.5. Orthogonal Projections to Latent Structures

O-PLS is a modified version of ordinary partial least squares (PLS)
[16]. It removes information, not correlated with the response. This
is achieved by subtracting orthogonal components from the origi-
nal data. The eventual O-PLS model may be built with one PLS-factor
and will thus be much simpler than the corresponding PLS model.
Another advantage is that the interpretation of the contribution of
the original variables to the model and to the predicted response
values is simpler [15].

2.6. Stepwise multivariate linear regression

In MLR a linear model (Eq. (1)) is built with given descriptive
variables using the least squares method to minimize the residuals

y = b0 + b1x1 + b2x2 + · · · + bnxn, (1)

where y is the quantitative property to predict (dependent vari-
able), xi an independent (descriptive) variable, b0 the intercept and
bi the regression coefficient for xi [23]. In the stepwise approach
the most important variables are selected by a stepwise selection
procedure, which combines the forward selection and backward
elimination approaches [21].

3. Experimental

3.1. Tea extract

The green tea samples were purchased as dried tea leaves, as
gunpowder or ground in teabags from supermarkets or special-
ized tea shops or were received as gifts. The preparation of the
tea extracts started by grinding (Jank & Kunkel Type 10A, Staufe,
Germany) 0.4 g dry tea three times for 10 s followed by the siev-
ing of the resulting powder through a 500 �m sieve (Retsch, Haan,
Germany). Then, 0.1 g of the sieved tea was infused with 20 ml of
initially boiling milli-Q water (Millipore, Milford, USA) for 7 min
in a dark environment. The infusion was sieved through a 100 �m
sieve (Retsch) and filtered through a 0.2 �m membrane filter (Pall
Gelman Laboratory, Karlstein/Main, Germany). Finally, the volume
of the extract was adjusted to 20.0 ml with water. The tea extract
was stored in a dark recipient in the refrigerator until analyses were
started (24 h maximum).
3.2. TEAC assay

A solution of ABTS radicals was prepared by storing an aqueous
solution containing 7 mM ABTS (Sigma–Aldrich, Steinheim, Ger-
many) and 2.45 mM K2S2O8 (Merck, Darmstadt, Germany) in a dark
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oom at room temperature for 12 h. At the start of the TEAC analy-
es, the latter solution was diluted until it exhibited an absorbance
etween 1.5 and 1.7 at 729 nm.

An antioxidant calibration line was constructed daily, with 20,
5, 30, 35 and 40 �M aqueous Trolox standards, diluted from a
mM Trolox (Sigma–Aldrich) solution in ethanol (Fisher Scientific,
eicestershire, UK). 0.3 ml of the least concentrated Trolox standard
as added to 1.0 ml of the diluted ABTS solution and mixed for 10 s

n the cuvet with a micropipette. The absorbance (A) was measured,
efore and 60 s after the addition of Trolox with a UV-2101PC-
pectrophotometer (Shimadzu, Tokyo, Japan) at 729 nm and the
ifference between both (�A) was calculated. This procedure was
epeated three times. The other Trolox standards, with increasing
oncentration, were treated analogueously. The average �A of the
our replicate measurements was plotted versus the concentration
f the standard to construct the calibration line.

To determine the antioxidant (AO) capacity of a green tea sam-
le, 0.3 ml of a 200 times diluted tea extract (prepared as in Section
.1) was added to 1.0 ml diluted ABTS solution. Then the same
rocedure as for the measurement of the Trolox standards was
erformed. When introducing the average �A of a sample in the
quation of the calibration line, the equivalent Trolox concentra-
ion could be estimated. This concentration is equivalent to 0.3 ml
f a diluted tea extract solution. In order to estimate the real TEAC
alue, i.e. the Trolox concentration exhibiting an antioxidant capac-
ty equivalent to that of a 1% (m/v) green tea extract, the obtained
alue should be multiplied by 20/0.3 to correct for the fact that only
.3 ml was measured and by 200 to correct for the dilution. Finally,
he resulting number should be multiplied by 1 g and divided by
times the effectively weighted mass of ground tea to obtain the

quivalent for a 1% extract.

.3. Chromatographic analyses

As stated in the introduction the chromatographic analyses
ere performed on two dissimilar columns: the Chromolith Per-

ormance RP-18 (100 mm × 4.6 mm) (Merck) (method 1) and the
aters XTerra RP-18 (100 mm × 4.6 mm) (Waters, Milford, USA)

method 2). For both methods the applied high-performance liq-
id chromatography (HPLC) system consisted of an L-7100 pump,
n L-7612 solvent degasser, an L-7250 autosampler, an L-7350
olumn oven, an L-7400 UV-detector and a D-7000 interface, all
rom Merck-Hitachi (Tokyo, Japan). This system was operated with
aChrom D-7000 HPLC Manager Software (Merck-Hitachi). The col-
mn oven temperature was 30 ◦C and the detection wavelength
80 nm. The injection volume and the data sampling rate were
5 �l and 200 ms, respectively. The tea samples were analyzed with
radient HPLC, where the organic phase was ACN (Fisher Scien-
ific) with 0.05% trifluoroacetic acid (TFA, Sigma–Aldrich, St-Louis,
SA) and the aqueous phase milli-Q water also with 0.05% TFA. The

eturn to the initial conditions took 3 min and finally the column
as reconditioned for 6 min.

.3.1. Method 1
A Chromolith Guard RP-18 column (5 mm × 4.6 mm) (Merck)

as placed before the Chromolith Performance to protect the ana-
ytical column against contamination. A flow rate of 2 ml/min was
pplied. The organic fraction increased from 2% to 26% within
0 min and then remained constant at 26% for 1 min.
.3.2. Method 2
On the Waters XTerra column a flow rate of 1 ml/min was

pplied. The organic fraction increased from 2% to 26% within
0 min and then remained constant at 26% for 3 min.
. B 878 (2010) 2733–2740 2735

3.4. Software

All data processing methods were performed with subroutines
developed under Matlab 7.0.1 software (Mathworks, Natick, USA).

4. Results and discussion

The first chromatographic system applied in this study was
the one developed in Ref. [12]. Since the stationary phase has a
major influence on selectivity [17,24], a dissimilar system was cho-
sen by performing the same analysis of one representative tea
sample on several columns, selected based on the color maps pre-
sented in [25]. However, the zirconium based columns (Zirchrom
PS and Zirchrom PBD), which are most dissimilar to the Chromolith
Performance according to the color map, did not produce good sep-
arations of the tea extracts. Very few peaks were observed in the
resulting chromatograms. The other selected dissimilar columns
(Zorbax Extend C18, Betasil Phenyl Hexyl and Zorbax Eclipse XCB
C8) produced fingerprints very similar to those obtained with Chro-
molith Performance. Since none of the dissimilar columns were
suitable for our aim, we also tested the Waters XTerra RP 18 col-
umn. In previous impurity profiling applications [26] this column
resulted in highly efficient separations dissimilar to those obtained
on the Zorbax Extend C18. Since the latter column produced a sim-
ilar separation as the Chromolith Performance, the Waters XTerra
RP 18 might also be dissimilar to the Chromolith Performance. The
fingerprint on the Waters XTerra RP18 column indeed resulted in a
profile visually different from that on the Chromolith Performance.
In general, when several columns result in more or less equally suit-
able dissimilar profiles, one may select the one resulting in a sepa-
ration with the lowest correlation with the first chromatogram [7].

After the selection step, replicate fingerprints were developed
on each of the two dissimilar systems for 63 green tea extracts. The
fingerprints were aligned per chromatographic method [19] with
COW in order to correct for peak shifts caused by instrumental
variability and small changes in mobile phase composition. Pro-
files, visually very different from the majority of the fingerprints
and/or outlying in the PCA score plots [20] (not shown), should be
removed. Then the average of the two replicate chromatograms
was calculated to obtain one profile per sample. A calibration set
of 40 samples, which should be representative for the studied tea
samples and which was used to build the multivariate calibration
model with O-PLS, was selected with the Kennard & Stone algo-
rithm [21,22].

In this study, the chromatograms obtained with the two meth-
ods were first treated individually with O-PLS as described in [15].
Then, for every sample both profiles, were concatenated in such
a way that they form one row in the matrix. This is the simplest
method to merge the information from both fingerprints dissimi-
lar analyses prior to O-PLS. However, this approach is expected to
increase the complexity of the data. Therefore, in a second instance,
only the peaks with high loadings and low orthogonal loadings (see
Section 4.6) were included in the matrix. Finally, stepwise MLR was
applied on the matrix containing the concatenated chromatograms
in order to build a model with a limited number of measured vari-
ables, which are most correlated with the antioxidant capacity. For
all approaches based on the combined data, it was verified whether
the resulting model indeed exhibited better predictive capacities
than those based on the individual fingerprints. The prediction
error was estimated with an external test set, i.e. the remainder
of the data set without the 40 calibration samples.
4.1. TEAC results

The measured TEAC values of the 63 green tea samples ranged
from 160.9 to 5395. However, it was noticed that only three samples
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(Table 1) than in Ref. [12], what can be explained by the fact that the
tea samples included in this study were more diverse. For instance,
only gunpowder tea was present in the dataset of Ref. [12], while
in this study also ground tea in bags was considered. Moreover,

Table 1
The complexity, the root mean squared error of cross validation (RMSCV) obtained
with LOO-CV, the root mean squared error for the calibration set (RMS) and the root
mean squared error of prediction for the external validation set (RMSEP) for the
models obtained with the individual fingerprints, the combined fingerprints and
the fingerprints from Ref. [12].

PLS factors Orthogonal factors RMSCV RMS RMSEP

Ref. [12] 8 / 159 81 174
736 M. Dumarey et al. / J. Chrom

xhibited extreme low values. When excluding these, the lowest
EAC value is 1959, which indicates the outlying aspect of the sam-
les with low antioxidant capacities (which further is confirmed
rom the fingerprint evaluation).

We selected three samples with a low (1959), intermediate
3279) and high TEAC value (4240) respectively in order to cal-
ulate, as in Ref. [12], the pooled standard deviation of the TEAC
nalysis, i.e. an estimate of the experimental variability. For each
ample four replicate measurements were performed resulting in
pooled standard deviation of 26.5. A better precision than in Ref.

12] (pooled standard deviation = 143) was thus achieved.

.2. Warping the chromatograms

Peak shifts occurred for both analyses and therefore COW was
pplied to align the individual chromatograms with a target chro-
atogram. The latter was the fingerprint exhibiting the highest

orrelation with all other on a given column. N, expressed as the
ength of the segment in this study, was set to 150 data points
nd t was varied between 2 and 60 data points. For some finger-
rints too low t values did not allow obtaining a high correlation
ith the target chromatogram and some peaks were not warped,
hile for others too high values of t caused the matching of non-

orresponding peaks. The suitability of a given t was evaluated
isually for each chromatogram individually. The COW procedure
esulted in well-aligned chromatograms (Figs. 1 and 2), which
xhibited high correlation with the target chromatogram (mostly
bove 0.90).

.3. Comparison of dissimilar fingerprints

The chromatographic profiles of the green tea samples on the
wo dissimilar systems (Figs. 1b and 2b) showed some selectivity
ifferences. The first obvious difference is that caffeine was partially
o-eluting with another compound applying method 1, while this
as not observed with method 2. A second noticeable difference is

hat more peaks appeared between the caffeine and EGC peaks in
he second fingerprint. Also in general, more peaks were resolved
ith method 2.

.4. Outlier detection

When studying the individual fingerprints, it was observed that
he samples with extreme low TEAC values also exhibited a very dif-
erent chromatographic profile compared to the other tea samples
n both systems (not shown). Probably, these three samples were
nother type of tea and therefore they were definitively excluded
rom the data sets used for modeling and prediction.

The scores of the 60 remaining fingerprints (two replicates)
ere distributed quite homogenously, both in the PC1–PC2 and in

he PC1–PC3 score plots. No further outlying objects were observed
or the two dissimilar analyses. It can thus be concluded that all
emaining fingerprints may be subjected to the multivariate cali-
ration.

.5. Multivariate calibration

Prior to the modeling, the average of the two replicate chro-
atograms for each tea extract was calculated resulting in one

ngerprint per sample and per analysis method. Then 40 green
ea samples were selected with the Kennard and Stone algorithm,

ased on their fingerprints (obtained with method 1), in order
o obtain a representative calibration set. The 20 remaining sam-
les were used as external test set. The last pretreatment step
onsisted of removing uninformative baseline points from the fin-
erprints. For method 1 the chromatographic profile between 1.00
Fig. 1. The (a) raw and (b) warped fingerprints of 60 green tea extracts measured on
the Chromolith Performance column (method 1); 1 caffeine and 2 EGC. The arrows
indicate the variables selected with stepwise MLR.

and 10.00 min was retained, while for method 2 the data from
1.66 min till the end (13 min) were used.

When applying O-PLS on the pretreated data of method 1, three
orthogonal components were removed based on leave-one-out
cross validation (LOO-CV) [13]. This resulted in worse predictions
Method 1 1 3 370 285 262
Method 2 1 3 499 386 332
Merged data 1 6 333 189 300
Selected data 1 4 413 294 312
Stepwise MLR 13 variables 129 83 286
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ing antioxidant capacity was not complementary and the merging
ig. 2. The (a) raw and (b) warped fingerprints of 60 green tea extracts measured
n (a) on the XTerra column (method 2); 1 caffeine and 2 EGC. The arrows indicate
he variables selected with stepwise MLR.

e also included green tea with extra aromas as, for instance, earl
rey. This might cause the appearance of additional peaks in the
hromatograms. Another observation possibly causing worse pre-
ictions was that the peaks are broader and as a consequence less
igh than in Ref. [12]. Column ageing was probably responsible for
his observation.

When a one-factor O-PLS model was built based on the pre-
reated data from method 2, also three orthogonal components
ere removed. Although the tea extracts seemed better separated
ith method 2, the prediction errors (Table 1) were higher than
ith method 1. This can be explained by the fact that it is more
ifficult to model the larger variation in the fingerprints result-

ng from method 2. Another possible explanation is that co-eluting
ompounds in method 1 probably have both similar structures
nd similar antioxidant capacities. Therefore their separation was
ess useful for modeling and only complicated the modeling. These
esults also confirm the findings in Ref. [12], in which longer
hromatograms with better separated peaks resulted in worse pre-
ictions than the five times shorter ones obtained on the same

olumn.

When concatenating the pretreated data of both analyses in
ne matrix and applying O-PLS, six orthogonal components were
ubtracted. This resulted in a higher root mean squared error of
Fig. 3. The measured TEAC values of 60 green tea extracts versus their values pre-
dicted with an O-PLS model based on the combined fingerprints; (©) calibration
samples and (*) test set samples.

prediction for the external test set (RMSEP) than for method 1,
but lower than for method 2. It can be noticed that in fact the
RMSEP obtained with the combined data was approaching the
mean RMSEP of both individual analyses. The combination of the
complementary information did thus not result in better predic-
tions due to an increased complexity of the data, which is more
difficult to model. This increased complexity was also observed
from the fact that more orthogonal components needed to be
removed. In Table 1 it also can be noticed that the RMSEP was con-
siderably higher than the root mean squared error of prediction
of the calibration set (RMS). This might indicate over fitting of the
model. However, in models where a lower number of orthogonal
components was subtracted, no reduced RMSEP was obtained. In
the plot which shows the predicted (based on the model from the
combined fingerprints) versus the measured TEAC values (Fig. 3),
also no indication of over fitting was observed.

We also tried to reduce the complexity of the merged data in
order to decrease the number of orthogonal components of the cal-
ibration model, to improve the predictive capacity and to evaluate
the complementary information from both fingerprints. Therefore
the chromatographic regions with high loadings and low orthogo-
nal loadings from both dissimilar chromatograms were selected to
build the O-PLS model. As described in Ref. [15], these chromato-
graphic regions are highly correlated with the antioxidant capacity
and might as a consequence represent anti-oxidizing compounds.
For method 1, these were the regions around the peaks at 3.5 and
8.6 min and around the EGC peak. For method 2 four regions were
selected: the region between 3.5 and 4.3 min containing two peaks,
the region between 6.8 and 8.3 min containing a number of smaller
peaks and the regions around the EGC peak and the peak at about
11.9 min. Although the number of orthogonal components could be
reduced to four, the model based on these selected regions resulted
even in a slightly higher prediction error (RMSEP = 312) (Table 1).
A possible explanation for this observation is that probably only 2
compounds, i.e. EGC and the one represented by the last, big peak,
determine most of the antioxidant capacity, while the lower con-
centrated antioxidizing components only have a minor influence.
Since the main difference between both dissimilar chromatograms
lays in the appearance of small peaks, their information concern-
of the data thus of limited use. However, in applications where
the property of interest is determined by many, rather equally
important compounds, not separable in a single chromatographic
analysis, the suggested approach might be beneficial.
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From the latter observations it can also be deduced that the
orse predictive capacity of the model based on method 2 is prob-

bly caused by a higher noise level or by the co-elution of either
GC or the other main antioxidizing compound, with compounds
ith no or little antioxidant capacity.

Another way to reduce data complexity is selecting stepwise the
ariables most correlated with the antioxidant capacity and there-
ore stepwise MLR was applied on the merged data. This resulted
n an RMSEP value of 286, which was lower than the prediction
rror of the O-PLS model based on the merged data, but higher than
hat of the model based on method 1. Moreover, the variable selec-
ion (indicated with arrows in Figs. 1b and 2b) seemed inadequate,
ecause also a few baseline points and points of low signal inten-
ity are included instead of the more expected peak maxima. This
mplied that also noise is modeled, which decreases the reliability
f the model and explains probably the large difference between
MS and RMSEP. For stepwise MLR, in contrast to O-PLS, it was
dvantageous to include data from both dissimilar analyses. The
btained RMSEP value was considerably lower than those of the
odels based on the individual analyses (357 and 628). The step-
ise MLR procedure also confirmed the importance of EGC, since

t was the only peak maximum included in the model.

.6. Interpretation of the models

When studying the loadings of the O-PLS model based on the
ethod 1 fingerprints (Fig. 4), the EGC peak, an anti-oxidizing com-

ound, is seen to have the largest loading. The peak eluting at about
.4 min had a loading proportional to its peak height, while the
eak at about 8.6 min had a relatively higher loading. The caffeine
eak, with a higher peak in the chromatogram, exhibited a rela-
ively lower loading. This is logic, since caffeine does not possess
ntioxidant capacity [12]. It could also be observed that the peak
artially co-eluting with caffeine had very low loadings.

In order to interpret the model further also the orthogonal load-
ngs, i.e. the loadings of the variables on the removed, orthogonal
omponents, were studied (Fig. 3). The first orthogonal loading,
onfirmed the earlier findings: the caffeine and the partially co-

luting compound showed high variation not correlated with the
ntioxidant capacity, while the opposite was true for the EGC and
he compound eluting around 8.6 min. The peak eluting at about
.4 min had also a relatively high orthogonal loading. When study-

ng the loading plots in more detail, it was seen that the loadings of

Fig. 5. The loadings (—) and orthogonal loadings (- - -) of the O-PLS
Fig. 4. The loadings (—) and orthogonal loadings (- - -) of the O-PLS model based on
the 60 fingerprints obtained with method 1.

the two small peaks eluting about 1.8 and 2.2 min were rather low,
while their orthogonal loadings were relatively higher. The same
was observed for the two peaks eluting just after EGC. These orthog-
onal loadings indicate the presence of compounds with limited or
no antioxidant activity. The fact that the loadings were not zero for
these compounds might be caused by co-elution of a compound
with anti-oxidizing compounds. Another, more probable explana-
tion, is that the concentration of the compounds were somewhat
correlated with the concentration of some anti-oxidizing com-
pounds present in the tea. As a consequence the concentration of
the compound was also somewhat correlated with the antioxidant
capacity and thus this information is partly included in the model.

When looking at the equivalent plots for the O-PLS model based
on the “method 2” fingerprints (Fig. 5), similar observations as
above are made for caffeine and EGC. The peak at 12 min had a
high loading and a relatively small orthogonal loading, which may
indicate an anti-oxidizing compound. The highest peak eluting

between caffeine and EGC, on the contrary, had a very low load-
ing and a high orthogonal loading and therefore originates from a
compound without antioxidant properties. The three small peaks
eluting just before the highest peak between caffeine and EGC and

model based on the 60 fingerprints obtained with method 2.
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ig. 6. The loadings (—) and orthogonal loadings (- - -) of the O-PLS model based on
he combined fingerprints.

he peak eluting just behind exhibited loadings proportional to
heir peak height and low orthogonal loadings, which indicates
he presence of at least four potentially anti-oxidizing compounds.
he small peaks at about 2.4 and 3.3 min showed small loadings
nd relatively larger orthogonal loadings, which implied that the
ompounds had no antioxidant capacity. The opposite was true
or the peaks eluting at about 3.6 and 4.1 min. The small peaks,
ppearing between EGC and the peak at 12.0 min, exhibited small
oadings and relatively higher orthogonal loadings. The opposite
ituation is observed for the two little peaks eluting after 12 min. As
een from above, the more peaks are present in the fingerprint the
ore peaks with or without probable antioxidant capacity can be

ndicated.
When comparing the (orthogonal) loadings for methods 1 and

, caffeine, EGC and the last eluting peak (at 8.6 min for method
and at 12.0 min for method 2) were behaving similarly in both

ngerprints. It was more difficult to compare the loadings of other
eaks, because it is impossible to match the peaks without identify-

ng them. An obvious difference between the (orthogonal) loading
lots of both analyses was that for method 2 more (orthogonal)

oadings, which can easily be linked with a peak of the fingerprint,
re seen. The fact that more peaks are present in the fingerprint
nd the corresponding (orthogonal) loading plot results thus in an
mproved (or more detailed) interpretability of the model.

The loadings and orthogonal loadings of the O-PLS model based
n the merged fingerprints are shown in Fig. 6. The loadings based
n the second fingerprint are higher, which is probably caused by
he fact that higher peaks are obtained with method 2 due to the
igher efficiency of the XTerra RP 18 column. Also the orthogonal

oadings are relatively much higher, which confirms the noisy pro-
le of method 2. Another observation is that the loading plot is in

act the merged loading plots of both individual analyses. It can
hus be concluded that the merging of two dissimilar fingerprints
oes not result in a better interpretation of the model.

The variable selection in stepwise MLR also could not improve
nterpretability, because, as mentioned in the previous section, the
elected variables have a low signal and in some cases even are
aseline points.
. Conclusions

The combination of fingerprints, obtained on two dissimilar
hromatographic systems, to build multivariate calibration models

[
[

[

. B 878 (2010) 2733–2740 2739

did neither result in better predictions of the antioxidant capacity of
green tea extracts nor in a better interpretability of the model. This
might on the one hand be caused by the increased complexity of the
data, when the two chromatographic profiles are merged. As a con-
sequence more orthogonal components are removed in the O-PLS
model (higher complexity) and averaged prediction errors (relative
to the individual models) are obtained. On the other hand, it is also
possible that no or only little useful complementary information,
concerning antioxidant capacity, was present in both dissimilar fin-
gerprints. This assumption was confirmed by the fact that only
few antioxidizing compounds are present in high concentration
in green tea and they will make the largest contribution to the
model. The lower concentrated compounds are then less impor-
tant for modeling and moreover a higher number of contributing
peaks increases the data complexity resulting in worse models.

However, in applications where many active compounds, occa-
sionally not separated from inactive compounds in a single
chromatographic analysis, are equally contributing to the property
of interest, the merging of dissimilar profiles might be advan-
tageous. The suggested approach remains thus an interesting
research topic, which is to be explored further.

For all applications, measuring fingerprints on dissimilar sys-
tems is beneficial to select the most appropriate system for further
multivariate calibration. In this paper and in Ref. [12], it was
observed that the best predictions are achieved with the least com-
plex fingerprints, i.e. the chromatogram with the lowest number of
peaks and thus most co-elution. On the contrary, when the goal
of the analyst is to indicate peaks (compounds) with antioxidant
properties, the more complex fingerprint is preferred.
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